Doubly Iterated Matrix Methods of Summability
نویسندگان
چکیده
منابع مشابه
On Absolute Matrix Summability Methods
We have proved a theorem on |T, p n | k summability methods. This theorem includes a known theorem.
متن کاملMatrix Summability in 7"-fields
when un = 22"-o a-inUi for all ra^O. If the sequence to sequence transformation associated with A is such that [u/[ ] exists and converges whenever [un] converges we call A a K matrix. If [uJ ] exists and converges to limn,,, un whenever this limit exists we call A a T matrix. Similar names for the series to sequence and the series to series matrices are TCi, 7\ and K2, T2 matrices respectively...
متن کاملIterated Point-Line Configurations Grow Doubly-Exponentially
Begin with a set of four points in the real plane in general position. Add to this collection the intersection of all lines through pairs of these points. Iterate. Ismailescu and Radoičić (2003) showed that the limiting set is dense in the plane. We give doubly exponential upper and lower bounds on the number of points at each stage. The proof employs a variant of the Szemerédi-Trotter Theorem ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1961
ISSN: 0002-9939
DOI: 10.2307/2034855